
EXA X-Series Signal Analyzer, Multi-touch N9010B

10 Hz to 3.6, 7.0, 13.6, 26.5, 32, or 44 GHz

Table of Contents

Definitions and Conditions	З
Frequency and Time Specifications	4
Amplitude Accuracy and Range Specifications	6
Dynamic Range Specifications	9
PowerSuite Measurement Specifications	14
General Specifications	15
Inputs and Outputs	16
I/Q Analyzer	18
Related Literature	20

This data sheet is a summary of the specifications and conditions for EXA signal analyzers. For the complete specifications guide, visit: www.keysight.com/find/exa_specifications

Cost-Effective Millimeter-Wave Signal Analysis

Whether you're focused on time-to-market, time-to-volume, or cost of test, your choice of economy class signal analyzer should help you save both time and money. That's the idea that drives the Keysight Technologies, Inc. EXA signal analyzer—your first, best choice when you need maximum value in signal analysis up to millimeter-wave frequencies. It helps you find the answer faster, whether you're seeking tighter design margins or shorter test times.

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to the full temperature range of 0 to 55 °C, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. $2\,\sigma$) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty.

The analyzer will meet its specifications when:

- It is within its calibration cycle
- Under auto couple control, except when Auto Sweep Time Rules = Accy
- Signal frequencies < 10 MHz, with DC coupling applied
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it had previously been stored at a temperature range inside the allowed storage range, but outside the allowed operating range
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances

Get More Information

This EXA signal analyzer data sheet is a summary of the specifications and conditions for N9010B EXA signal analyzers. A full set of specifications are available in the EXA Signal Analyzer Specification Guide at www.keysight.com/find/exa_specifications.

For ordering information, refer to the N9010B EXA Signal Analyzer Configuration Guide literature number (5992-1253EN).

Frequency and Time Specifications

LO multiple (N) 1 1 1	10 Hz to 3.6 GHz 10 Hz to 7 GHz 10 Hz to 13.6 GHz 10 Hz to 26.5 GHz 10 Hz to 32 GHz 10 Hz to 44 GHz 10 Hz to 3.6 GHz 3.5 to 7.0 GHz	10 MHz to 3.6 GHz 10 MHz to 7 GHz 10 MHz to 13.6 GHz 10 MHz to 26.5 GHz NA	
1 1 1 2	10 Hz to 13.6 GHz 10 Hz to 26.5 GHz 10 Hz to 32 GHz 10 Hz to 44 GHz 10 Hz to 3.6 GHz 3.5 to 7.0 GHz	10 MHz to 13.6 GHz 10 MHz to 26.5 GHz NA	
1 1 1 2	10 Hz to 26.5 GHz 10 Hz to 32 GHz 10 Hz to 44 GHz 10 Hz to 3.6 GHz 3.5 to 7.0 GHz	10 MHz to 26.5 GHz NA	
1 1 1 2	10 Hz to 32 GHz 10 Hz to 44 GHz 10 Hz to 3.6 GHz 3.5 to 7.0 GHz	NA	
1 1 1 2	10 Hz to 44 GHz 10 Hz to 3.6 GHz 3.5 to 7.0 GHz		
1 1 1 2	10 Hz to 3.6 GHz 3.5 to 7.0 GHz	NA	
1 1 1 2	3.5 to 7.0 GHz		
1 2	3.5 to 7.0 GHz		
1 2			
2			
	3.5 to 8.4 GHz		
	8.4 to 13.6 GHz		
2	13.5 to 17.1 GHz		
4	17 to 26.5 GHz		
4	26.4 to 34.5 GHz		
8	34.4 to 44 GHz		
	± [(time since last adjustment x aging	rate) + temperature stability + calibration accuracy]	
		Standard	
	± 1 x 10 ⁻⁷ / year	± 1 x 10 ⁻⁶ / year	
•		,	
	·	Standard	
	•	$\pm 2 \times 10^{-6}$	
ige .	± 5 x 10 ⁻⁸	± 2 x 10 ⁻⁶	
	Option PFR	Standard	
,	± 4 x 10 ⁻⁸	$\pm 1.4 \times 10^{-6}$	
ference accuracy (with	$= \pm (1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8})$		
istment	$= + 1.9 \times 10^{-7}$		
io cinione	_ 1.0 X 10		
	< (0.25 Hz x N) n-n in 20 ms nomina		
	≤ (10 Hz x N) p-p in 20 ms nominal		
curacy (start. stop. cen		·F/	
, , ,	± (marker frequency x frequency ref	erence accuracy + 0.25 % x span + 5 % x RBW	
unter			
	± (marker frequency x frequency ref	erence accuracy + 0.100 Hz)	
V	± (delta frequency x frequency reference accuracy + 0.141 Hz)		
,			
and swept mode)			
	0 Hz (zero span), 10 Hz to maximum	frequency of instrument	
	± (0.25 % x span + horizontal resolu	tion)	
	•		
f	ration accuracy ference accuracy (with	$ \begin{array}{c} \pm \text{ [(time since last adjustment x aging to Option PFR} \\ \pm 1 \times 10^{-7} \text{ / year} \\ \hline \pm 1.5 \times 10^{-7} \text{ / 2 years} \\ \hline \text{Option PFR} \\ \pm 1.5 \times 10^{-8} \\ \hline \text{erge} \\ \hline \text{Pration accuracy} \\ \hline \text{Option PFR} \\ \pm 4 \times 10^{-8} \\ \hline \text{deterence accuracy (with } \\ \hline \text{et } (1 \times 10^{-7} + 5 \times 10^{-8} + 4 \times 10^{-8}) \\ \hline \text{estment} \\ \hline \text{estment} \\ \hline \text{et } (10 \text{ Hz} \times \text{N}) \text{ p-p in 20 ms nominal} \\ \hline \text{see band table above for N (LO Multiciary start, stop, center, marker)} \\ \hline \text{et } \text{ (marker frequency x frequency referency} \\ \hline \text{to marker frequency x frequency} \\ \hline \text{to Marker frequency x frequency} \\ \hline \text{to Marker frequency} \\ \hline$	

^{1.} Horizontal resolution is span/(sweep points - 1).

Sweep time and triggering		
Range	Span = 0 Hz	1 μs to 6000 s
	Span ≥ 10 Hz	1 ms to 4000 s
Accuracy	Span ≥ 10 Hz, swept	± 0.01% nominal
	Span ≥ 10 Hz, FFT	± 40% nominal
	Span = 0 Hz	± 0.01% nominal
Trigger	Free run, line, video, external 1, extern	nal 2, RF burst, periodic timer
Trigger Delay	Span = 0 Hz or FFT	-150 to +500 ms
	Span ≥ 10 Hz, swept	0 to 500 ms
	Resolution	0.1 μs
Time gating		
Gate methods	Gated LO; gated video; gated FFT	
Gate length range (except method = FFT)	100.0 ns to 5.0 s	
Gate delay range	0 to 100.0 s	
Gate delay jitter	33.3 ns p-p nominal	
Sweep (trace) point range		
All spans	1 to 40001	
Resolution bandwidth (RBW)		
Range (-3.01 dB bandwidth)	1 Hz to 3 MHz (10 % steps), 4, 5, 6, 8 l	MHz
Bandwidth accuracy (power)	1 Hz to 750 kHz	± 1.0 % (± 0.044 dB)
	820 kHz to 1.2 MHz (< 3.6 GHz CF)	± 2.0 % (± 0.088 dB)
	1.3 to 2 MHz (< 3.6 GHz CF)	± 0.07 dB nominal
	2.2 to 3 MHz (< 3.6 GHz CF)	0 to -0.2 dB nominal
	4 to 8 MHz (< 3.6 GHz CF)	0 to -0.4 dB nominal
Bandwidth accuracy (-3.01 dB) RBW range	1 Hz to 1.3 MHz	± 2 % nominal
Selectivity (-60 dB/-3 dB)	4.1:1 nominal	
EMI bandwidth (CISPR compliant)	200 Hz, 9 kHz, 120 kHz, 1 MHz	(Option EMC required)
EMI bandwidth (MIL STD 461E compliant)	10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz	(Option EMC required)
Analysis bandwidth ¹		
Maximum bandwidth	Option B40	40 MHz
	Standard	25 MHz
Video bandwidth (VBW)		
Range	1 Hz to 3 MHz (10 % steps), 4, 5, 6, 8 l	MHz, and wide open (labeled 50 MHz)
Accuracy	± 6 % nominal	

^{1.} Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

Amplitude Accuracy and Range Specifications

Amplitude range	
Measurement range	Displayed average noise level (DANL) to +23 dBm
Input attenuator range (10 Hz to 44 GHz) Standard Option FSA	0 to 60 dB in 10 dB steps 0 to 60 dB in 2 dB steps
Electronic attenuator (Option EA3)	0 to 00 dB iii 2 dB 0top0
Frequency range	10 Hz to 3.6 GHz
Attenuation range Electronic attenuator range Full attenuation range (mechanical + electronic)	0 to 24 dB, 1 dB steps 0 to 84 dB, 1 dB steps
Maximum safe input level	
Average total power (with and without preamp)	+30 dBm (1 W)
Peak pulse power	< 10 µs pulse width, < 1 % duty cycle +50 dBm (100 W) and input attenuation ≥ 30 dB
DC volts DC coupled AC coupled	± 0.2 Vdc ± 100 Vdc
Display range	
Log scale	0.1 to 1 dB/division in 0.1 dB steps 1 to 20 dB/division in 1 dB steps (10 display divisions)
Linear scale	10 divisions
Scale units	dBm, dBmV, dBμV, dBmA, dBμA, V, W, A

Frequency response		Specification	95th percentile ($\approx 2\sigma$)
(10 dB input attenuation, 20 to	30 °C, preselector centering app	lied, σ = nominal standard d	eviation)
RF/MW	9 kHz to 10 MHz	± 0.8 dB	± 0.4 dB
(Option 503, 507, 513, 526)	10 MHz ¹ to 3.6 GHz	± 0.6 dB	± 0.21 dB
	3.5 to 7.0 GHz	± 2.0 dB	± 0.69 dB
	7.0 to 13.6 GHz	± 2.5 dB	
	13.5 to 22.0 GHz	± 3.0 dB	
	22.0 to 26.5 GHz	± 3.2 dB	
Millimeter-wave	9 kHz to 10 MHz	± 0.6 dB	± 0.28 dB
(Option 532, 544)	10 to 50 MHz	± 0.45 dB	± 0.21 dB
	50 MHz to 3.6 GHz	± 0.45 dB	± 0.20 dB
	3.5 to 5.2 GHz	± 1.7 dB	± 0.91 dB
	5.2 to 8.4 GHz	± 1.5 dB	± 0.61 dB
	8.3 to 13.6 GHz	± 2.0 dB	± 0.61 dB
	13.5 to 17.1 GHz	± 2.0 dB	± 0.67 dB
	17.0 to 22.0 GHz	± 2.0 dB	± 0.78 dB
	22.0 to 26.5 GHz	± 2.5 dB	± 0.72 dB
	26.4 to 34.5 GHz	± 2.5 dB	± 1.11 dB
	34.4 to 44 GHz	± 3.2 dB	± 1.42 dB
Preamp on (P03, P07, P13, P26)			
RF/MW	100 kHz to 3.6 GHz		± 0.28 dB nominal
(Option 503, 507, 513, 526)	3.6 to 7.0 GHz		± 0.67 dB nominal
	7.0 to 26.5 GHz		± 0.80 dB nominal
Preamp on (P03, P07, P32, P44)			
Millimeter-wave	100 kHz to 3.6 GHz		± 0.28 dB nominal
(Option 532, 544)	3.5 to 8.4 GHz		± 0.67 dB nominal
	8.4 to 26.5 GHz		± 0.80 dB nominal
	26.4 to 44 GHz		± 0.80 dB nominal

^{1.} DC coupling required to meet specifications below 50 MHz. With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz with AC coupling show that most instruments meet the DC-coupled specifications, however, a small percentage of instruments are expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible but not warranted.

Input attenuation switching uncert	ainty	Specifications	Additional information
Attenuation > 2 dB, preamp off	50 MHz (reference frequency)	± 0.20 dB	± 0.08 dB typical
Relative to 10 dB	9 kHz to 3.6 GHz		± 0.3 dB nominal
(reference setting)	3.5 to 7.0 GHz		± 0.5 dB nominal
	6.9 to 13.6 GHz		± 0.7 dB nominal
	13.5 to 26.5 GHz		± 0.7 dB nominal
	> 26.5 GHz		± 1.0 dB nominal
Total absolute amplitude accuracy			
(10 dB attenuation, 20 to 30 °C, 1 reference level, any scale, σ = nor		to –50 dBm, all settings	auto-coupled except Auto Swp Time = Accy, any
	At 50 MHz	± 0.40 dB	
	At all frequencies	± (0.40 dB + frequent	
	9 kHz to 3.6 GHz	± 0.27 dB (95th perc	
Preamp on	100 kHz to 3.6 GHz	± (0.39 dB + frequen	cy response)
Input voltage standing wave ratio (VSWR) (≥ 10 dB input attenuation)		
	Options 503,	Options 532, 544	
10 MHz to 3.6 GHz	507, 513, 526 < 1.2:1 nominal	1.2:1 nominal	
3.6 to 26.5 GHz	< 1.2.1 nominal		
26.5 to 44 GHz		1.5:1 nominal	
	N/A	< 1.8:1 nominal	
	ncertainty (referenced to 30 kHz RBW	1)	
1 Hz to 3 MHz RBW	± 0.10 dB		
4, 5, 6, 8 MHz RBW	± 1.0 dB		
Reference level			
Range			
Log scale	-170 to +23 dBm in 0.01 dB steps		
Linear scale	Same as Log (707 pV to 3.16 V)		
Accuracy	0 dB		
Display scale switching uncertaint	у		
Switching between linear and log	0 dB		
Log scale/div switching	0 dB		
Display scale fidelity			
Between –10 dBm and –80 dBm input mixer level	± 0.15 dB total		
Trace detectors			
Normal, neak, sample, negative no	eak, log power average, RMS average	e, and voltage average	
Preamplifier (Option P03, P07, P13		-, 1211490 4101490	
		100 kHz to 3.6 GHz	
Frequency range	Option P03 Option P07	100 kHz to 3.6 GHz	
	Option P13	100 kHz to 7 GHz	
	Option P26	100 kHz to 13.5 GHz	
	Option P32	100 kHz to 32 GHz	
	Option P44	100 kHz to 44 GHz	
Gain	100 kHz to 3.6 GHz	+20 dB nominal	
	3.6 to 7.0 GHz	+35 dB nominal	
	> 7 GHz	+40 dB nominal	
Noise figure	100 kHz to 3.6 GHz	·	proportional to frequency)
	3.6 to 8.4 GHz	9 dB nominal	

10 dB nominal

DANL + 176.24 dB nominal

8.4 to 13.6 GHz

> 13.6 GHz

Dynamic Range Specifications

1 dB gain compression (two-to	ne)		
		Total power at mix	xer input
RF/MW (Option 503, 507, 513, 526)	20 MHz to 26.5 GHz	+9 dBm nominal	
		Total power at mix	xer input
Millimeter-wave	20 MHz to 26.5 GHz	+6 dBm nominal	
(Option 532, 544)	26.5 to 44 GHz	0 dBm nominal	
		Total power at pre	eamp input
Preamp on	10 MHz to 3.6 GHz 3.6 to 26.5 GHz Tone spacing: 100 kHz to 20 MHz	-14 dBm nominal -28 dBm nominal	
	Tone spacing: > 70 MHz	-20 dBm nominal	
	> 26.5 GHz	-30 dBm nominal	
Displayed average noise level (DANL)		
(Input terminated, sample or a	verage detector, averaging type = Log,	, 0 dB input attenuati	ion, IF Gain = High, 20 to 30 °C)
		Specification	Typical
RF/MW	1 to 10 MHz	–147 dBm	-149 dBm
(Option 503, 507, 513, 526)	10 MHz to 2.1 GHz	–148 dBm	-150 dBm
	2.1 to 3.6 GHz	–147 dBm	-149 dBm
	3.5 to 7.0 GHz	–147 dBm	-149 dBm
	7.0 to 13.6 GHz	–143 dBm	-147 dBm
	13.5 to 20 GHz	–137 dBm	–142 dBm
	20 to 26.5 GHz	–134 dBm	-140 dBm
Preamp on, RF/MW	10 MHz to 2.1 GHz	–161 dBm	-163 dBm
(Option 503, 507, 513, 526)	2.1 to 3.6 GHz	–160 dBm	–162 dBm
	3.5 to 7.0 GHz	–160 dBm	–162 dBm
	7.0 to 13.6 GHz	– 160 dBm	–163 dBm
	13.5 to 17.1 GHz	–157 dBm	-160 dBm
	17.0 to 20.0 GHz	–155 dBm	–159 dBm
	20.0 to 26.5 GHz	–150 dBm	–156 dBm
Millimeter-wave	9 kHz to 1 MHz	_	–130 dBm
(Option 532, 544) ¹	1 MHz to 1.2 GHz	–152 dBm	–155 dBm
	1.2 to 2.1 GHz	–151 dBm	–154 dBm
	2.1 to 3.6 GHz	–149 dBm	–152 dBm
	3.5 to 4.2 GHz	–144 dBm	–147 dBm
	4.2 to 8.4 GHz	–145 dBm	–150 dBm
	8.3 to 13.6 GHz	–147 dBm	-150 dBm
	13.5 to 20 GHz	–145 dBm	–148 dBm
	20 to 26.5 GHz	–142 dBm	–145 dBm
	26.4 to 34 GHz	–140 dBm	-144 dBm
	34.4 to 44 GHz	–135 dBm	–140 dBm

Without Option B40, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the EXA specifications guide for more details.

Displayed average noise level	(DANL) (continued)			
Preamp on, millimeter-wave	100 kHz to 1 MHz	–145 dBm	–148 dBm	
(Option 532, 544) ¹	1 to 10 MHz	–161 dBm	–165 dBm	
	10 MHz to 1.2 GHz	–164 dBm	–165 dBm	
	1.2 to 2.1 GHz	–163 dBm	–164 dBm	
	2.1 to 3.6 GHz	–162 dBm	–163 dBm	
	3.5 to 7 GHz	-160 dBm	–162 dBm	
	7 to 20 GHz	–160 dBm	–162 dBm	
	20 to 26.5 GHz	–158 dBm	–160 dBm	
	26.5 to 32 GHz	–156 dBm	–159 dBm	
	32 to 34 GHz	–156 dBm	–159 dBm	
	33.9 to 40 GHz	–153 dBm	–155 dBm	
	40 to 44 GHz	–149 dBm	–153 dBm	
DANL with Noise Floor Extens	ion Improvement (Option NF2)			
DANL improvement exceeds 7	dB with 95% confidence in the ave	erage of all bands, with and	without the preamplifier	
RF/MW (Option 503, 507, 513	, 526)			
Example of effective DANL @) 18-30 °C			
Frequency	Preamp Off	Preamp On		
Mid-Band 0 (1.8 GHz)	–156 dBm	-170 dBm		

Mid-Band 0 (1.8 GHz)	–156 dBm	–170 dBm	
Mid-Band 1 (5.9 GHz)	–155 dBm	–168 dBm	
Mid-Band 2 (10.95 GHz)	–153 dBm	–168 dBm	
Mid-Band 3 (15.3 GHz)	–147 dBm	–165 dBm	
Mid-Band 4 (21.75 GHz)	–145 dBm	–157 dBm	
Millimeter-Wave (Option 532	2, 544) ¹		
Example of effective DANL (@ 18-30 °C		
Frequency	Preamp Off	Preamp On	
Mid-Band 0 (1.8 GHz)	–157 dBm	–169 dBm	
Mid-Band 1 (5.9 GHz)	–152 dBm	–166 dBm	
Mid-Band 2 (10.95 GHz)	–154 dBm	–165 dBm	
Mid-Band 3 (15.3 GHz)	–153 dBm	–164 dBm	
Mid-Band 4 (21.75 GHz)	–148 dBm	–164 dBm	
Mid-Band 5 (30.4 GHz)	–145 dBm	-160 dBm	
	110 00111		
Mid-Band 6 (42.7 GHz)	-142 dBm	-154 dBm	

^{1.} Without Option B40, DP2, or MPB. When any of these options are installed, performance may change. Please refer to the EXA specifications guide for more details.

Spurious responses			
Residual responses (input	200 kHz to 8.4 GHz (swept)	–100 dBm	
terminated and 0 dB attenuation)	Zero span or FFT or other frequencies	–100 dBm nominal	
	Tuned frequency (f)	Mixer level	Response
Image responses	10 MHz to 3.6 GHz	–10 dBm	-80 dBc (-107 dBc typical)
(Excitation freq. = f + 645 MHz)	3.6 to 13.6 GHz	–10 dBm	–75 dBc (–87 dBc typical)
	13.6 to 17.1 GHz	–10 dBm	-71 dBc (-85 dBc typical)
	17.1 to 22 GHz	–10 dBm	-68 dBc (-82 dBc typical)
	22 to 26.5 GHz	–10 dBm	-66 dBc (-78 dBc typical)
	26.5 to 34.5 GHz	-30 dBm	-70 dBc (-94 dBc typical)
	34.5 to 44 GHz	-30 dBm	-60 dBc (-79 dBc typical)
LO related spurious (f > 600 MHz from carrier, 10 MHz to 3.6 GHz)	10 MHz to 3.6 GHz		–90 dBc + 20 logN ¹ typical
Other spurious response	Mixer level	Response	
Carrier frequency ≤ 26.5 GHz			
First RF order (f ≥ 10 MHz from carrier)	–10 dBm	-80 dBc + 20log(N	¹⁾ Including IF feedthrough, LO harmonic mixing responses
Higher RF order (f ≥ 10 MHz from carrier)	-40 dBm	-80 dBc + 20log(N	¹) Including higher order mixer responses
Carrier frequency > 26.5 GHz			
First RF order (f ≥ 10 MHz from carrier)	–30 dBm	-90 dBc nominal	
Higher RF order (f ≥ 10 MHz from carrier)	-30 dBm	-90 dBc nominal	

^{1.} N is the LO multiplication factor.

Second harmonic distortion (S	SHI)		
	Source frequency	SHI (nominal)	
RF/MW	10 MHz to 1.8 GHz	+45 dBm	
(Option 503, 507, 513, 526)	1.75 to 7.0 GHz	+65 dBm	
	7.0 to 11.0 GHz	+55 dBm	
	11.0 to 13.25 GHz	+50 dBm	
Millimeter-wave	10 MHz to 1.8 GHz	+45 dBm	
(Option 532, 544)	1.8 to 6.5 GHz	+65 dBm	
	6.5 to 10 GHz	+60 dBm	
	_10 to 13.25 GHz	+55 dBm	
	13.25 to 22 GHz	+50 dBm	

(Two -18 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to 30 °C, see Specifications Guide for IF prefilter bandwidths)

		TOI	TOI (typical)	
RF/MW	100 to 400 MHz	+13 dBm	+17 dBm	
(Option 503, 507, 513, 526)	400 MHz to 3.6 GHz	+14 dBm	+18 dBm	
	3.6 to 13.6 GHz	+14 dBm	+18 dBm	
	13.6 to 26.5 GHz	+12 dBm	+16 dBm	
Preamp on, RF/MW (Option 503, 507, 513, 526)	30 MHz to 3.6 GHz (two -45 dBm 3.6 to 26.5 GHz (two -50 dBm ton	·	0 dBm nominal -18 dBm nominal	
Millimeter-wave	10 to 100 MHz	+12 dBm	+17 dBm	
(Option 532, 544)	100 MHz to 3.95 GHz	+15 dBm	+19 dBm	
	3.95 to 8.4 GHz	+15 dBm	+18 dBm	
	8.3 to 13.6 GHz	+15 dBm	+18 dBm	
	13.5 to 17.1 GHz	+11 dBm	+17 dBm	
	17.0 to 26.5 GHz	+10 dBm	+17 dBm (nominal)	
	26.5 to 44 GHz	-	+13 dBm (nominal)	
Preamp on, millimeter-wave	30 MHz to 3.6 GHz (two -45 dBm	tones at preamp)	0 dBm (nominal)	
(Option 532, 544)	3.6 to 26.5 GHz (two -50 dBm ton	es at preamp)	-18 dBm (nominal)	

Page 12 Find us at www.keysight.com

Phase noise	Offset	Specification	Typical
Noise sidebands	100 Hz	-87 dBc/Hz	-102 dBc/Hz
$(20 \text{ to } 30 ^{\circ}\text{C}, \text{CF} = 1 \text{GHz})$	1 kHz	-	-110 dBc/Hz nominal
	10 kHz	-107 dBc/Hz	-109 dBc/Hz
	100 kHz	-115 dBc/Hz	-118 dBc/Hz
	1 MHz	-134 dBc/Hz	-136 dBc/Hz
	10 MHz	-	–147 dBc/Hz nominal

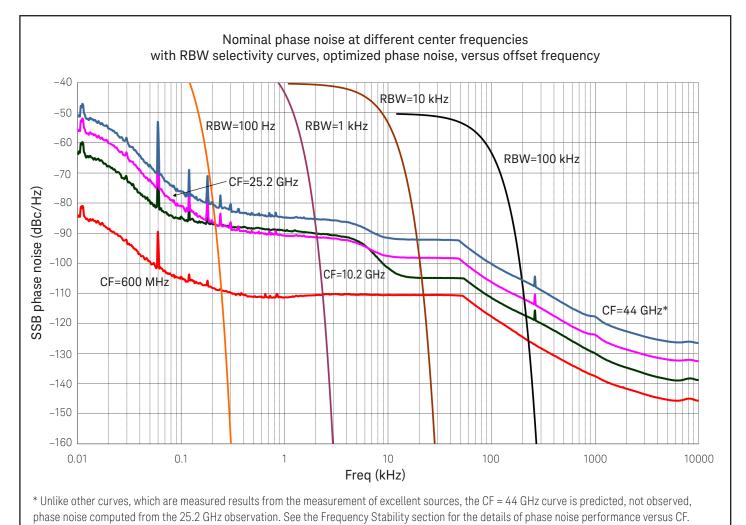


Figure 1. Nominal phase noise at different center frequencies.

Option MPB, microwave preselector bypass ¹			
Frequency range			
N9010B-507	3.6 to 7 GHz		
N9010B-513	3.6 to 13.6 GHz		
N9010B-526	3.6 to 26.5 GHz		
N9010B-532	3.6 to 32 GHz		
N9010B-544	3.6 to 44 GHz		

^{1.} When Option MPB is installed and enabled, some aspects of the analyzer performance changes. Please refer to the EXA specification guide for more details.

PowerSuite Measurement Specifications

Channel power			
Amplitude accuracy, W-CDMA or IS95 (20 to 30 °C, attenuation = 10 dB)	± 1.04 dB (± 0.27 dB 95t	h percentile)	
Occupied bandwidth			
Frequency accuracy	± [span/1000] nominal		
Adjacent channel power			
	Adjacent	Alternate	
Accuracy, W-CDMA (ACLR) (at specific mixer levels and ACLR ranges) MS	± 0.17 dB	± 0.22 dB	
BTS	± 0.70 dB	± 0.57 dB	
Dynamic range (typical)	± 0.70 db	± 0.07 db	
Without noise correction	-68 dB	-74 dB	
With noise correction	-73 dB	-76 dB	
Offset channel pairs measured	1 to 6		
ACP measurement and transfer time (fast method)	10 ms nominal (σ = 0.2 d	B)	
Multiple number of carriers measured	Up to 12		
Power statistics CCDF			
Histogram resolution	0.01 dB		
Harmonic distortion			
Maximum harmonic number	10th		
Result	Fundamental power (dBr	n), relative harmonics power (dBc), total harmonic distortion in %	
Intermod (TOI)	Measure the third-order products and intercepts from two tones		
Burst power			
Methods	Power above threshold, p	power within burst width	
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width		
Spurious emission			
W-CDMA (1 to 3.6 GHz) table-driven spur	rious signals: search acros	s regions	
Dynamic range	80.4 dB	82.9 dB typical	
Absolute sensitivity	-82.5 dBm	-86.5 dBm typical	
Spectrum emission mask (SEM)		71	
cdma2000® (750 kHz offset)			
Relative dynamic range (30 kHz RBW)	76.2 dB	82.8 dB typical	
Absolute sensitivity	-97.7 dBm	–101.7 dBm typical	
Relative accuracy	± 0.12 dB		
3GPP W-CDMA (2.515 MHz offset)			
Relative dynamic range (30 kHz RBW)	79.3 dB	84.9 dB typical	
Absolute sensitivity	-97.7 dBm	–101.7 dBm typical	
Relative accuracy	± 0.15 dB		

General Specifications

Temperature range	
Operating	0 to 55 °C
Storage	-40 to 70 °C

EMC

Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR 11 Group 1, Class A
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001

Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 2006/95/EC

- IEC/EN 61010-1 3rd Edition
- Canada: CSA C22.2 No. 61010-1-12
- U.S.A.: UL 61010-1 3rd Edition

Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u)

Acoustic noise emission

LpA < 70 dB

Operator position

Normal position

Per ISO 7779

Environmental stress

Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements			
Voltage and frequency	100/120 V, 50/60/400 Hz	The instruments can operate with mains supply voltage	
	220/240 V, 50/60 Hz	fluctuations up to ± 10% of the nominal voltage	
Power consumption			
On	350 W maximum		
Standby	20 W		
Display			
Resolution	1280 x 768		
Size	269 mm (10.6 in.) diagonal (nominal) d	capacitive multi-touch screen	
Data storage			
Internal	≥ 80 GB nominal (removable solid-sta	te drive)	
External	Supports USB 2.0 or 3.0 compatible memory devices		
Weight (without options)			
Net	18 kg (40 lbs) nominal		
Shipping	30 kg (66 lbs) nominal		
Dimensions			
Height	177 mm (7.0 in)		
Width	426 mm (16.8 in)		
Length	368 mm (14.5 in)		
Warranty			

Warranty

The EXA signal analyzer is supplied with a standard 1-year warranty

Calibration cycle

The recommended calibration cycle is two years; calibration services are available through Keysight service centers

Inputs and Outputs

Front nanol	
Front panel	
RF input connector	T W.C L. 50.0
Standard (Option 503, 507, 513, or 526)	Type-N female, 50 Ω nominal
Standard (Option 532 or 544)	2.4 mm male, 50 Ω nominal
Probe power	
Voltage/current	+15 Vdc, ± 7 % at 150 mA max nominal
	–12.6 Vdc, ± 10 % at 150 mA max nominal
USB ports	
Master (3 ports)	
Standard	Compatible with USB 2.0
Connector	USB Type-A female
Output current	
Port marked with lightning bolt	1.2 A nominal
Ports not marked with lightning bolt	0.5 A nominal
External mixing, Option EXM (available on	y with EXA millimeter wave, Option 532 or 544)
Connection port	
Connector	SMA, female
Impedance	50 Ω nominal
Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	± 10 mA in 10 μA step
IF input center frequency	the trip
Narrowband IF path	322.5 MHz
40 MHz IF path	250 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
Connector	BNC female, 50 Ω nominal
Output amplitude	≥ 0 dBm nominal
Frequency	10 MHz ± (10 MHz x frequency reference accuracy)
Ext Ref In	
Connector	BNC female, 50 Ω nominal
Input amplitude range	-5 to 10 dBm nominal
Input frequency	10 MHz nominal
Frequency lock range	± 5 x 10 ⁻⁶ of specified external reference input frequency
Trigger 1 and 2 inputs	. 1 1 2
Connector	BNC female
Impedance	> 10 kΩ nominal
Trigger level range	-5 to 5 V
Trigger 1 and 2 outputs	
Connector	BNC female
Impedance	50 Ω nominal
Level	5 V TTL nominal
Monitor output	
Connector	VGA compatible, 15-pin mini D-SUB
Format	XGA (60 Hz vertical sync rates, non-interlaced) analog RGB
Resolution	1024 x 768

Rear panel	
Noise source drive +28 V (pulsed)	
Connector	BNC female
SNS Series noise source connector	For use with Keysight SNS Series noise sources
Analog out	
Connector	BNC female (used with N9063A analog demod app and Option YAS)
USB ports	<u> </u>
Master, super speed 2 ports	
Compatibility	USB 3.0
Connector	USB Type-A female
Output current	0.9 A nominal
Master, stacked with LAN	1 port
Compatibility	USB 2.0
Connector	USB Type A female
Output current	0.5 A nominal
Slave	1 port
Standard	USB 3.0
Connector	USB Type-B female
Output current	0.9 A nominal
GPIB interface	
Connector	IEEE-488 bus connector
GPIB codes	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0
GPIB mode	Controller or device
LAN TCP/IP interface	
Standard	1000Base-T
Connector	RJ45 Ethertwist
IF output	
Connector	SMA female, shared by Option CR3 and CRP
Impedance	50 Ω nominal
Wideband IF output, Option CR3	
Center frequency	
SA mode or I/Q analyzer with IF BW ≤ 25 MHz	322.5 MHz
with Option B40	250 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	
Low band	Up to 140 MHz (nominal)
High band, with preselector	Depends on center frequency
High band, with preselector bypassed ¹	Up to 410 MHz (nominal)
Programmable IF output, Option CRP	
Center frequency	
Range	10 to 75 MHz (user selectable)
Resolution	0.5 MHz
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth	. 12 . 12 (totalinat) place in inequency respective
Output at 70 MHz center	
Low band or high band with preselector bypassed ¹	100 MHz (nominal)
Preselected band	Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	≤ −88 dBm (nominal)
	= 55 55m (normally

^{1.} Option MPB installed and enabled.

I/Q Analyzer

Frequency					
Frequency span					
Standard	10 Hz to 10 MHz				
Option B25 (standard)	10 Hz to 25 MHz				
Option B40	10 Hz to 40 MHz				
Resolution bandwidth (spectrum measure	ement)				
Range					
Overall	100 mHz to 3 MHz				
Span = 1 MHz	50 Hz to 1 MHz				
Span = 10 kHz	1 Hz to 10 kHz				
Span = 100 Hz	100 mHz to 100 Hz				
Window shapes					
Flat top, Uniform, Hanning, Gaussian, Black	kman, Blackman-Harris, Kaise	er Bessel (K-B 70 dB, K-	B 90 dB and K-B 110 dB)		
Analysis bandwidth					
Standard	10 Hz to 10 MHz				
Option B25 (standard)	10 Hz to 25 MHz				
Option B40	10 Hz to 40 MHz				
IF frequency response (standard 10 MHz I					
IF frequency response (demodulation and		he center frequency. 2	0 to 30 °C)		
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS	
< 3.6	≤ 10	n/a	± 0.40 dB	0.04 dB nominal	
≥ 3.6	≤ 10	on	2 0. 10 02	0.25 dB nominal	
≥ 3.6	≤ 10	off ¹	± 0.45 dB	0.04 dB nominal	
> 26.5 (Option 532 or 544)	≤ 10	on	2 0. 10 02	0.35 dB nominal	
IF phase linearity (deviation from mean p		011		o.oo ab nomma	
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS	
< 3.6	≤ 10	n/a	0.4°	0.1°	
≥ 3.6	<u>≤ 10</u> ≤ 10	off ¹	0.4°	0.1°	
≥ 3.6 (Option ≤ 526)	<u>≤ 10</u>	on	1.0°	0.2°	
Data acquisition (10 MHz IF path)	2 10	UII	1.0	0.2	
Time record length IQ analyzer	4,000,000 IQ samp	la naira			
Sample rate at ADC	4,000,000 10 5a111p	te pairs			
Option DP2, B40 or MPB	100 MSa/s				
None of the above	90 MSa/s				
ADC resolution	30 14104/3				
Option DP2, B40 or MPB	16 bits				
None of the above	14 bits				
Option B25 (standard) 25 MHz analysis ba					
IF frequency response (demodulation and		he center frequency. 2	0 to 30 °C)		
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS	
≤ 3.6	10 to ≤ 25	n/a	± 0.45 dB	0.051 dB nominal	
> 3.6	10 to ≤ 25	on	_ 00 00	0.45 dB nominal	
> 3.6	10 to ≤ 25	off ¹	± 0.45 dB	0.071 dB nominal	
IF phase linearity (deviation from mean p		0 11	_ 0. 10 db	5.57 F db Hommut	
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS	
0.02 ≤ f < 3.6	Spail (Min2) ≤ 25	n/a	0.6°	0.14°	
	≤ 25 ≤ 25	off ¹	1.9°	0.14 0.4°	
≥ 3.6					
≥ 3.6 (Option ≤ 526)	≤ 25	on	4.5°	1.2°	

1. Option MPB is installed and enabled.

Data acquisition (25 MHz IF path)				
Time record length (IQ pairs) IQ Analyzer	4,000,000 IQ sampl	le pairs		
89600 software	32-bit packing	64-bit packing		Memory
Option DP2, B40 or MPB	536 MSa	268 MSa		2 GB
None of the above	4,000,000 IQ sample	e pairs (independent of data	a packing)	
Sample rate at ADC Option DP2, B40 or MPB	100 MSa/s			
None of the above	90 MSa/s			
ADC resolution Option DP2, B40 or MPB	16 bits			
None of the above	14 bits			
Option B40 40 MHz analysis bandwidth				
IF frequency response (demodulation and FF	T response relative to	the center frequency, 20	to 30 °C), nominal	
Center frequency (GHz)	Span (MHz)	Preselector	Max. error	RMS
0.03 ≤ f < 3.6	≤ 40	n/a	± 0.3 dB	0.08 dB
3.6 ≤ f ≤ 26.5	≤ 40	off ¹	± 0.25 dB	0.08 dB
> 26.5	≤ 40	off ¹	± 0.25 dB	0.12 dB
IF phase linearity (deviation from mean phas	se linearity, nominal)			
Center frequency (GHz)	Span (MHz)	Preselector	Peak-to-peak	RMS
0.02 ≤ f < 3.6	40	n/a	0.2°	0.05°
≥ 3.6	40	off ¹	5°	1.4°
Data acquisition (40 MHz IF path)				
Time record length (IQ pairs) IQ Analyzer	4,000,000 samples	(I/Q pairs)		
89600 VSA software	32-bit packing	64-bit packing	2 GB total memory	(nominal)
Length (IQ sample pairs)	536 MSa	268 MSa		
Length (time units)			Samples/(span x 1.2	28) (nominal)
Sample rate At ADC	200 MSa/s			
IQ pairs			Span x 1.28 (nomina	ıl)
ADC resolution	12 bits			

^{1.} Option MPB is installed and enabled.

Related Literature

Publication title	Publication number
X-Series Signal Analyzers – Brochure	5992-1316EN
N9010B EXA X-Series Signal Analyzer, Multi-touch – Configuration Guide	5992-1253EN

For more information or literature resources please visit the web:

Product page: www.keysight.com/find/N9010B

X-Series measurement applications: www.keysight.com/find/X-Series_Apps

X-Series signal analyzers: www.keysight.com/find/X-Series

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

